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Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continu-
ously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat
transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed
and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model ac-
counts for radiative exchange between the heaters and the load, heat conduction in the load, and convec-
tive heat transfer between the moving load and oven environment. The thermal model developed has been
used to construct a general framework for an inverse optimal design of an industrial oven as an example.
In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization al-
gorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be
specified to achieve a prescribed temperature distribution of the surface of a load. The results of calcula-
tions for several sample cases are reported to illustrate the capabilities of the procedure developed for the
optimal inverse design of an industrial radiant oven.

1. Introduction

In many materials processing applications such as drying of
paper, thermal finishing of coating, and others, a procedure fre-
quently encountered involves material moving continuously
inside an oven while being heated (Ref 1). As an example, an
infrared radiant oven typically consists of the array of heat-
ers/burners placed on the top, bottom, and sometimes the sides
of the enclosure. Electrical resistance or gas-fired heaters are
used to heat the material to a desired temperature. The heat-
ers/burners provide a steady supply of the thermal radiation to
the load as it moves inside the oven.

The problem considered in this paper is concerned with an
inverse design of the oven capable of providing the optimal
conditions for thermal treatment of the load. The technical is-
sue is to determine the design and operating parameters of the
oven (temperatures of each heater/burner, size of the heaters,
etc.) that satisfy the optimal performance criteria prescribed by
the user (specific temperature distribution on the surface of the
moving load or heating uniformity, energy efficiency, and others).

This article describes a transient, quasi-three-dimensional
model of heat transfer in the radiant heating oven coupled to the
load moving inside the oven as the material is thermally
treated. The model considers radiation exchange between the
heaters and the load, heat conduction in the load, and convec-
tive heat transfer between a moving load and gaseous oven en-
vironment. The thermal model developed is then combined
with the Levenberg-Marquardt nonlinear least squares optimi-

zation algorithm to find the optimal temperatures of each
heater/burner and other operating parameters that produce an
arbitrary but physically realistic temperature distribution on
the surface of a load as prescribed by the process designer/op-
erator. This inverse design procedure is applied to several sam-
ple cases to illustrate the potential capabilities of the approach.

2. Thermal Model Description

2.1 General Problem Formulation

Consider an industrial oven to be the parallelepiped enclo-
sure formed by the six walls of refractories or other insulating
materials capable of withstanding the high temperature envi-
ronment (see Fig. 1). The continuously moving strip of material
or stock placed on the conveyor belt progresses through the fur-
nace while being thermally treated. In general, the opaque load
could be virtually of any shape, and an arrangement of the heat-
ers inside the furnace could also be arbitrary.

The load is heated while being transported in a horizontal
plane. Heat transfer to the surface of the moving load is by
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combined radiation and convection. The infrared heaters sup-
ply radiant energy to the material. The moving strip or belt and
buoyancy due to the large temperature gradients between the
heaters, oven walls, and load induce an exceedingly complex
flow of the gas inside the oven. This results in the mixed con-
vection heat transfer from the gas to the load surface. In the
load, the thermal energy storage, conduction, advection, and
possible phase transformations (melting of coating, evapora-
tion, and chemical reactions) must be considered.

Different modes of heat transfer occurring in the furnace are
illustrated schematically in Fig. 2. The instantaneous heat flux
at any point (s) on the load surface includes contributions due
to radiation exchange between heaters and the load and between
refractories and the load (qlh

r   and qlw
r , respectively), convection

to the gaseous environment (qlg
c ), and possible phase transforma-

tion (qt ) (Fig. 2) and can be written as:

q(s) = qlh
r  (s) + qlw

r  (s) + qlg
c  (s) + qt(s) (Eq 1)

Equation 1 is to be used in the overall dynamic thermal model
as the boundary condition at the load surface at every time in-
stant.

The final step of the inverse optimal design is integration of
the thermal model of the furnace enclosure and load dynamics
into a suitable optimization algorithm. The general optimiza-
tion procedure and the information flow in the optimal design
algorithm are illustrated in Fig. 3.

Apparently, the general furnace geometry and heat transfer
processes occurring in the oven are very complex and, hence,
must be simplified for the purpose of mathematical analysis.

The next section describes a mathematical model of radiative
heating of the load in an oven of a simple design with flat heat-
ers placed only on the roof and the floor of the unit. Of course,
the model easily could be extended to include a case when heat-
ers are placed on the side and end walls of the oven enclosure.

2.2 Simplified Problem: Model Equations

A schematic diagram of an industrial oven of a simple de-
sign for radiant heating of the load moving at a constant veloc-
ity U0 together with the coordinate system is shown in Fig. 4.

The radiant heaters are placed only on the top and the hearth,
while the load (a thin rectangular sheet of the material) is mov-
ing in the middle of the oven. The heaters are assumed to be flat
and kept at the uniform temperature although different in the
absolute value for each individual heater. A particular geomet-
rical arrangement of the heater arrays will be given with the re-
sults of sample calculations. Note that due to a symmetry of the
system, only the upper part of the entire arrangement is shown
in Fig. 4.

To simplify the problem, it is assumed that radiation heat
transfer occurs only between the heaters and the surface of the
load. The radiation incident on the refractory walls, which is re-
flected toward the load surface, is assumed to be negligibly
small in comparison to the direct radiation exchange between
the heaters and the load.

Also, it is assumed that the gases filling the oven enclosure
are radiatively nonparticipating. Radiation and convection are
considered as two independent heat transfer modes that are act-
ing in parallel. Doing this renders the interaction between con-
vective and radiative heat transfer at all surfaces including that
of the load (Ref 2), negligible. Furthermore, in order to calcu-
late the convective heat transfer from the oven gas to the load,
the oven gas temperature (Tg) and the convective heat transfer
coefficient (hg) are taken to be constant. The convective coef-
ficient is calculated from an empirical correlation given by

Fig. 2 Schematic illustrating modes of heat transfer in an in-
dustrial oven (superscripts r, c, and t refer to radiation, convec-
tion, and phase transformation, respectively: subscripts l, w, h,
and g refer to load, refractory wall, heater, and gas, respectively)

Fig. 3 Model structure and optimization procedure informa-
tion flow
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Incropera and DeWitt (Ref 3). Additional assumptions which
allow simplification in the mathematical treatment of the proc-
ess are given.

Finally, in this particular example we do not consider ther-
mal effects associated with possible phase transformation
and/or chemical reactions occurring in the material or at the
surface. However, those effects, if present, could be included
readily in the mathematical model in a straightforward fashion.

An industrial oven as shown in Fig. 4 is a three-dimensional
system. However, for simplicity of analysis, the following co-
ordinate decomposition is applied: first, the radiation heat ex-
change problem is formulated and solved considering the
heaters and the load surface in the x-z plane only; then, the load
material is divided into rectangular parallel elements along the
z direction, and the transient advection-conduction heat trans-
fer problem is solved for each (x-y) strip of the load separately.
Such a decomposition is implicitly based on the assumption
that the temperature gradient in the material along the z direc-
tion is much smaller than those along x and y directions and,
hence, can be safely ignored. Given above, the energy equation
for each (x-y) strip of the load (z is fixed) can be written as:

∂ (ρcT)
∂t

 + U0 
∂ (ρcT)
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          for each  0 ≤ z ≤ W

(Eq 2)

Note that in the present formulation, the thermophysical prop-
erties (density ρ, specific heat c, and thermal conductivity k) of
the load material can be given as direction dependent.

The initial transient heating of the load is considered to be
very short compared to the time it takes the load to traverse the
heated length L and is, therefore, neglected (∂T/∂t → 0). This
assumption together with the relationship x = Vt allows Eq 2 to
be written in the following form:
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         for each  0 ≤ z ≤ W (Eq 3)

To conclude the mathematical formulation of the problem
we need to provide the appropriate boundary conditions. In
particular, the load temperature at the inlet to the oven x = 0 is
equal to the initial “cold” load temperature, T (0, y, z) = Tin, and
the temperature gradient along the x direction is assumed to
vanish at the exit of the oven, that is, ∂T(L, y, z)/∂x = 0. As indi-
cated above, the heat transfer at the upper and lower horizontal
load surfaces is by combined radiation and convection and can
be stated as:

−k 
∂T

∂y
 = ∫ q

0

∞

λ
rdλ + hg [Tg − T (x, z)] at y = 0 (Eq 4)

k 
∂T

∂y
 = ∫ q

0

∞

λ
rdλ + hg [Tg − T (x, z)] at y = δ (Eq 5)

The model for calculating the radiative heat fluxes qr is detailed
in the following subsection.

2.3 Radiation Heat Exchange

It is clear from Eq 4 and 5 that the model takes into account
spectral dependence of radiation in calculating the total net ra-
diative fluxes at the load surface. Specifically, all surfaces (that
is, those of heaters and of the load) are assumed to be diffuse
absorbers and reflectors of radiation, and the integration over
the entire wavelength spectrum (from 0 to ∞) is carried out us-
ing band models. To this end, the entire wavelength region is di-
vided into a finite number of bands, Nb, such that:

∫ q
0

∞

λ
rdλ = ∑ 

k=1

N
b

 


α∆λ

k
Gk (x, z)∆λk − ε∆λk

Eb(T) [f (λk+1T)



    


 − f (λkT)]

k

 (Eq 6)

Equation 6 requires the band-averaged spectral radiation proper-
ties ε∆λ

k
 and α∆λ

k
, the expression for the fractional spectral

black body emitted flux f(λkT), and a model for the spectral ir-
radiation to the load Gk. The radiation properties of the load
material can be found in the literature or must be obtained
through direct experimentation.

Fig. 4 Schematic of the physical arrangement and the coordi-
nate system
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The fractional spectral black body emitted flux f(λkT) is
given by the integral (Ref 4):

f (λkT) = ∫ Ebλ
0

λ
k
T

(T)dλ ⁄ Eb(T) (Eq 7)

with the spectral and total black body emitted fluxes defined as:

Ebλ( T) = 2C1
 ⁄ λ5 [exp(C2

 ⁄ λT) − 1] (Eq 8)

and

Eb(T) = ∫ Ebλ
0

∞

(T)dλ = σT 4 (Eq 9)

respectively. The constants C1 and C2 are equal to 0.59548 ×
10–16 W m2 and 1.43879 cm K, respectively, and σ ( =5.670 ×
10–8W/m2K) is the Stefan-Boltzmann constant.

Since the load and the oven walls are assumed to be “cold”
compared to the heaters, the problem is generally simplified
and the radiation heat exchange between the heaters and the
load surfaces is no longer coupled. In particular, the irradiation
on the load surface element, i, (Fig. 4) for wavelength band ∆λk
can be expressed as:

G i
k = ∑ 

j=1

N
h

 Fij  J j
k (Eq 10)

where Nh is the total number of heaters on one side only (top or
bottom) and Fij are the configuration (view angle) factors
which are determined from the layout of the heater, j, with re-
spect to the ith load surface element (Ref 4). For the geometry
considered, these factors are given by Hsu (Ref 5). Lastly, the
radiosity J j

k or leaving flux from the jth heater in the wave-
length interval  ∆λk = λk+1 – λk is given by:

J j
k = ε j

h Eb(Thj) [f (λk+1Thj) − f (λkThj)] (Eq 11)

where εj
h stands for the emissivity of the jth heater and the total

and fractional spectral black body emitted fluxes Eb(Thj) and
f(λkThj) for band ∆λk can be computed from Eq 9 and 7, respec-
tively, for a given temperature of the heater Thj. For the sake of
completeness, it should be mentioned that the general formula-
tion of the problem which includes radiation exchange between
all components of the industrial oven is available (Ref 6).

2.4 Method of Solution

Clearly, given the geometry (size and location) and tem-
perature for each heater and the thermophysical and radiative
properties of the load and heaters as the input information, one
can readily calculate total and fractional spectral black body
emitted fluxes Eb(Thj) and f(λkThj) for each band ∆λk of the en-

tire spectrum, the configuration factors Fij, radiosity J j
k, and, in

turn, the irradiation G i
k. This completes the formulation of

boundary conditions, Eq 4 and 5, and, hence, the energy con-
servation Eq 3 can be solved for each (x-y) strip at z = const.

Equation 3 is of the elliptic type and can be solved using the
finite volume numerical integration technique described by
Patankar (Ref 7). Suffice it to mention that each x-y strip is sub-
divided into finite rectangular volumes over which the energy
conservation equation is integrated using the finite-difference
approximation for spatial derivatives and then solved itera-
tively by the tridiagonal matrix inversion algorithm. The tem-
perature is underrelaxed by factor of 0.5 in order to achieve the
stable converged solution.

The numerical algorithm can be summarized in the steps:

1. Read geometric and operating data.

2. Initialize variables and set up the numerical grid in the
load.

3. Compute the configuration factors.

4. Compute the irradiation and emitted fluxes at the load
surface elements.

5. Solve energy equation for each x-y element of the load.

6. Print out the resulting temperature and heat flux distribu-
tions.

3. Optimization Algorithm

3.1 Problem Formulation

As stated in the introduction, it is desirable to use the ther-
mal model described in the previous section as an analytical
tool for an intelligent thermal design of the radiantly heated in-
dustrial oven. For example, it is desirable to find an algorithm
which allows one to find the temperatures of each separate
heater such that an oven operator can obtain a prescribed spatial
temperature distribution on the surface of the load being proc-
essed.

In general terms, the nonlinear least square optimization
problem can be stated as: find the optimal values of the optimi-
zation variables X = (x1,…,xn) (for example, operating tem-
perature of the heaters) which minimize the L2-norm of a
particular prescribed function F(X) = (f1,…,fm) (for example,
the squared difference between achieved and prescribed tem-
peratures at the load surface):

XεR
  nmin F(X) = 

XεR
 n

min  
1
2

 F(X )TF(X ) = 
XεR

 n
min  

1
2

 ∑ 

i=1

m

 fi(X )2

(Eq 12)

L ≤ X ≤ U or lj ≤ xj ≤ uj,  j = 1,..., n (Eq 13)

Note that the number of points where F is evaluated (that is, m)
must always be larger than number of optimization variables X
(that is, n) for correct problem formulation. Equation 13 allows
a user to set the simple bounds on each operating parameter (for
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example, the heater temperature may be set not to exceed some
given temperature recommended by the heater manufacturer).

3.2 Solution Algorithm

To solve the given optimization problem, Eq 12 and 13, a
modified Levenberg-Marquardt iterative method (Ref 8, 9) is
employed. Starting from the initial guess point X0, the optimi-
zation routine builds the active set IA on every iteration which
contains the variables xj at their respective lower and upper
bounds lj and uj. The variable xj is called a free variable if it is
not in the current active set IA. The algorithm then computes
the search direction for the free variables in the next step ac-
cording to the formula:

d = − (JTJ + µI)−1J TF(X) (Eq 14)

where µ is the Levenberg-Marquardt parameter, I is a unitary
matrix, and J = Jij = ∂fi/∂xj is the Jacobian with respect to the
free variables. The search direction for the variables in the ac-
tive set IA is set to zero. Then, the trust region approach dis-
cussed by Dennis and Schnabel (Ref 10) is used to find the new
point X. Finally, the optimality conditions are stated in the
form:

J (X ∗) ≤ ε for l j < xj
∗ < uj,  j = 1, …, n (Eq 15)

J (xj
∗) < 0 for xj

∗ = uj,  j = 1, …, n (Eq 16)

J (xj
∗) > 0 for xj

∗ = lj,  j = 1, …, n (Eq 17)

The process is iteratively repeated until the optimality criterion
(ε = 1 × 10–5) is met.

3.3 Practical Implementation

The optimization algorithm described in the previous sub-
section is practically implemented using the numerical routines
DBCLSF and DU4LSF from the International Mathematical
and Statistical Libraries (IMSL). The computer routine which
numerically solves the thermal model of the industrial oven is
used to compute the values of the minimizing function F(X) at
each iteration and linked with DBCLSF and DU4LSF optimi-
zation routines in one general computer program.

It should be noted that the numerical computations involved
in the described optimal design procedure can be extremely
time demanding. Often, several days of continuous program
running on the SUN workstation were needed in order to
achieve an optimal solution of the problem.

4. Sample Calculations

This section of the paper describes the results of inverse op-
timal oven design for several concrete sample cases. The objec-
tive is to demonstrate the robustness and relevance of the

optimization procedure developed to the real world design ap-
plications.

4.1 Sample Case 1

The heater arrangement for this simulation is shown in Fig.
5. Both surfaces of the moving load are exposed to 20 staggered
and equal size heaters located on the crown and bottom of the
furnace at the same distance H = 0.5 m from the moving stock.
The length, L, and width, W, of the oven roof and hearth, taken
to be the same as the dimensions of the load (Fig. 4), are equal
to 4 and 2 m, respectively.

Fig. 5 Arrangement and operating temperatures (in degrees K)
for the heaters (load velocity U0 = 0.05 m/s)

Fig. 6 Temperature distribution on the load surface (load veloc-
ity U0 = 0.05 m/s)
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The objective of the virtual design is to find the optimal op-
erating temperatures for each heater Thj such that the tempera-
ture field on the surface of the load approaches the prescribed
function:

Tdef = (1 – x) × 300 + x × 400 K if  0  ≤ x ≤ 2 m (Eq 18)

Tdef = 400 K if  2 m < x ≤ 4 m (Eq 19)

It is clear that the vector of optimization variables X consists of
heater temperatures (that is, xj = Thj) and the function F(X) to
be minimized is simply given by the difference between the
current and prescribed load surface temperatures at each grid
node, i, [that is, F = { fi} = (Tcurrent – Tdef)]. Also imposed are
the lower L and upper U limiting bounds on each heater tem-
perature as equal to 300 K and 2000 K , respectively. This com-
pletes the formulation of the optimization problem as given by
Eq 12 and 13.

All other operating and geometrical parameters are summa-
rized:

• Thickness of the load δ = 0.002 m
• Load velocity U0 = 0.05 m/s

• Initial temperature of the load Tin = 300 K
• Emissivity ε∆λk

 and absorptivity α∆λk
 of the load surface are

taken to be the same for every band ∆λk and equal to 0.8
(that is, the gray approximation is used)

• Thermophysical properties of the load are: ρ = 5000
kg/m3, c = 1000 J/kgK, and k = 0.5 W/mK

• Emissivity of the heaters εh = 0.9

The uniform grid on the load with 42 nodes in x direction
and 22 nodes in both y and z directions is employed in the simu-
lation in order to establish grid-independent and convergent so-
lutions.

The optimized spatial distribution of the temperature, heat
flux, and incident radiative flux on the load surface are shown
in Fig. 6, 7, and 8, respectively. Clearly, the temperature distri-
bution on the surface of the load, (Fig. 6) which resulted from
application of the optimization procedure, matches very
closely a prescribed temperature field as given in Eq 18 and 19.
The values of the operating temperature for each heater, which
produce such a temperature distribution, are found as a result of
the optimization search and are presented in Fig. 5.

As follows from Fig. 5, the temperature of different heaters
varies significantly and could hardly be anticipated from gen-
eral physical considerations without an explicit mathematical

Fig. 7 Heat flux distribution on the load surface (load velocity
U0 = 0.05 m/s)

Fig. 8 Incident radiative flux distribution on the load surface
(load velocity U0 = 0.05 m/s)
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optimization. Also, the optimization algorithm dictates that
only 16 out of 20 heaters must be turned on to obtain a desired
load surface temperature (the heaters having operating tem-
perature 300 K can be viewed as simply being turned off).

4.2 Sample Case 2

This case is intended to illustrate the effect of the load veloc-
ity on the optimal operating temperatures of the radiant heaters.
Hence, the optimization procedure is applied to the system
(oven plus load) that is described by the same set of parameters
as that in Case 1, but the load velocity is increased by a factor of
two (that is, U0 = 2 × 0.05 = 0.1 m/s). The prescribed tempera-
ture distribution on the load surface is also the same as in Case
1 and is given by Eq 18 and 19.

Figures 9, 10, and 11 show the spatial distributions of the
temperature, heat flux, and incident radiative flux on the load
surface, respectively, as the results of the inverse optimal de-
sign. Again, as one can conclude from Fig. 9, the load surface
temperature is virtually the same as that defined by Eq 18 and
19. The set of optimal operating temperatures for each heater
that leads to the prescribed load surface temperature is pre-
sented in Fig. 12. As expected, these temperatures are higher
than those obtained in the previous case because the residence
time for the load in the oven decreases with an increase in the

load (conveyor) velocity. As a result, higher energy input and,
consequently, higher heater temperatures are required to bring
the load surface temperature to the desired condition. However,
it should be noted that despite a two-fold decrease in the resi-
dence time, the optimal temperatures of the heaters increase by
only a few percent due to nonlinear dependence of the radiative
heat flux on the temperature.

5. Conclusions

This paper presents a formulation of an inverse design prob-
lem and solution algorithm of the radiant heating in an indus-
trial oven for material processing applications. Two sample
simulations have been analyzed, and the results of calculations
lead to the conclusions:

• The use of the optimization technique in conjunction with a
detailed thermal model for the radiant heating process ap-
pears to be a very powerful analytical approach that allows
the system designer and/or operator to identify the optimal
values of the operating furnace parameters. In general, al-
most every operating parameter (for example, speed of the
load, size, number, and location of heaters, etc.) can be in-
cluded into an optimization loop, which, in turn, can be
constrained by almost any conditional bounds (for exam-
ple, lower limit on thermal efficiency of the heaters, upper
limit on fuel consumption, and others).

• A traditional forward design approach involves multiple
trials and, hence, can be used only for very simple systems
and processes where the forward search is guided by the in-
tuition of the designer. In more general settings, when the
system geometry is complex and multiple modes of trans-
port processes are present, the use of the formal and mathe-
matically sound optimization algorithms is highly
desirable.

• Inverse optimal design is a numerically intensive technique
that often requires large computer resources to address the
problem in a timely fashion. However, continuous ad-
vances in computer technology and development of the
novel optimization algorithms allow optimism about an in-
crease in practical applications of the inverse optimization
methods in the thermal engineering design and real time
operation of the system.

• This paper has presented results of inverse optimal design
of the heating process under three major simplifying as-
sumptions: (a) the load is considered to be a thin sheet of
material continuously moving inside the furnace, (b) the
load surface and refractory walls are taken to be “cold” in
comparison to the heaters in order to decouple the radiation
exchange model, and (c) the oven contents (gases) are
viewed as a nonparticipating medium. Hence, for other spe-
cific applications (for example, high temperature treatment
of the discrete parts transported on the conveyer belt) the
same methodology can still be applied but more complex
thermal models will be needed. The analysis can also be ex-
tended to high-temperature furnaces where radiation heat
transfer from the refractory walls to the load must be ac-
counted for as has been done elsewhere (Ref 6).

Fig. 9 Temperature distribution on the load surface (load veloc-
ity U0 = 0.1 m/s)
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